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XIL The Tightness of the Teeth, considered as a Problem concerning the
Equilibrium of a Thin Incompressible Elastic Membrane.
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—~ 8 § 1. Introduction.

A tooth may be regarded as a rigid body, held in a rigid socket by a thin membrane—
the periodontal membrane or pericementum—which fills the space between the tooth
and the bone, and is attached to each. This membrane, whose average thickness*

* Cf. OrBAN, ‘ Dental Histology and Embryology,” p. 127 (1928).
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436 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

is only 023 to 0-25 mm. (0-0091 to 0-0099 in.), is called upon to supply the tractions
necessary to resist the forces applied in biting or chewing.

An interesting problem in the theory of elasticity is thus suggested, namely, the
determination of the displacement of the tooth and the strain and stress in the membrane,
corresponding to the application of assigned forces to the crown of the tooth. We are
obviously entitled to treat the problem mathematically as that of an infinitely thin
membrane, but we shall have to make other simplifications in order to reduce the
problem to a manageable form.

With this object in view, we shall first make two hypotheses of which the former
is reasonably likely to be true, but the latter much less so. These hypotheses are that
the membrane is elastically (i) homogeneous ; (ii) isotropic.

Our next hypothesis is that the membrane is tncompressible.* We may justify
this assumption from the fact that the tissue is largely composed of water, and that
the only changes in volume arise when variations in pressure draw in extra blood from
the circulatory system or squeeze it out; but these changes will probably be small
unless the membrane is in a congested condition. Congestion, with consequent com-
pressibility, might be expected theoretically to cause a slight loosening of the tooth.
There is, however, another way of approaching this question of incompressibility, which
is of interest. It is improbable that, in the normal functioning of the tooth, the
membrane experiences finitet strain, or, in other words, that the linear elements of the
membrane experience finite elongations. On the other hand, in order to balance
finite applied forces, the stress in the membrane must be finite. Now finite stress
and infinitesimal strain can coexist only if at least one of the elastic moduli is infinite.
Having already assumed that the membrane is elastically isotropic, we have at our
disposal two moduli, the modulus of compression and the rigidity. It is improbable
that the rigidity is infinite; thus we are led to the assumption that the membrane
is incompressible.

The elastic characteristics assumed above differ considerably from the structure
sometimes assumed in dental research. The presence of fibres in the membrane,
running across it from tooth to bone, has led to the idea that the membrane functions
as a system of elastic cords.f Since, however, these fibres are usually not straight
when seen in a microscopic section, it is difficult to see how they alone could account
for the tightness possessed by a tooth. It is more probable that their effect on the
elastic specification is to render the membrane anisotropic, although still incompressible.
‘We shall not, however, take such anisotropy into consideration.

* Cf. Gvsi, ¢ Dent. Digest,” vol. 36, p. 623 (1930).

1 We are here only seeking basic hypotheses. ~The word  finite ” is used in a loose sense. Physically,
“ infinitesimal ’ means “ very small,” “infinite ” means “ very large.”” If the strain were finite, the
investigation would lie outside the scope of ordinary elastic theory.

+ Cf. Scuwarz, * Dent. Ttems,” February (1930).


http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

JA '\

_\r
NI
olm
~ =
oY)
o)
= uw

y
A B

SOCIETY

A A

OF

OF

Downloaded from rsta.royalsocietypublishing.org

J. L. SYNGE ON THE TIGHTNESS OF THE TEETH. 437

To sum up, our problem is as follows :—

An elastic membrane fills the space between, and is attached to, two rigid bodves, the
tooth and the socket, of which the former is subjected to assigned forces, while the latter is
held fized. We assign to the membrane the following properties :—

(i) nfinmitesimal, but not necessarily uniform, thickness ;
(ii) homogeneity ;
(iii) usotropy ;
(iv) wncompressibility ;
(v) finite rigidaty ;

and we shall suppose that the free edge, or margin, of the membrane vs subject to atmospheric
pressure. . The problem is to investigate the equilibrium of the system, particularly with
regard to the displacement of the tooth and the strain and stress in the membrane.

As far as the differential equations are concerned, the problem is closely analogous
to the problem of the motion of a thin layer of viscous liquid, as treated in the theory
of lubrication. The analogy led A. G. M. Michell to suggest the experimental investiga-
tion of problems of lubrication by statical experiments on incompressible elastic

- media. ¥

Before proceeding to describe the contents of the paper, it may be well to state in
a word what it is that accounts for the tightness of a tooth, held by a membrane of
finite rigidity. It is the pressure, which, in the incompressible medium, takes the
place of three of the ordinary components of stress. As we pass over the surface of
the root, the pressure undergoes finite variations and these variations yield a finite
resultant, capable of balancing finite applied forces. We find, in the course of the
investigation, that the displacement of the tooth, as a result of the application of finite
forces, is very small indeed, varying as the cube of the thickness of the membrane.
This fact gives additional weight to the present theory, as explaining the tightness of
the teeth, for, if the membrane were a compressible elastic body, we would find the
displacement of the tooth directly proportional to the thickness of the membrane.
Moreover, the present theory assigns a rapid increase in looseness with increase in the
thickness of the membrane. Were the membrane to function as a system of elastic
cords, the angular displacement of the tooth would be proportional to the thickness of
the membrane (the load being supposed constant): no matter how wide the membrane

* The following references to the hydrodynamical theory may be quoted : RevyNoLps, ‘ Phil. Trans.,’
vol. 177, p. 157 (1886) ; ‘ Papers on Mechanical and Physical Subjects,” vol. 2, p. 228 ; Ravieien, ‘ Phil.
Mag.” (5), vol. 36, p. 354 (1893) ; * Sci. Pap.,” vol. 4, p. 78 ; ° Phil. Mag.,” vol. 35, p. 1 (1918); ° Sei. Pap.,’
vol. 6, p. 523 ; SoMMERFELD,  Z. Math. Phys.,” vol. 50, p. 97 (1904) ; MicHELL, sbid., vol 52, p. 123 (1905).
The analogy to the theory of the Prandtl boundary-layer (where the viscosity is small) is much less close ;
for the application of tensor methods to this latter problem in its most general form, we may, however,
refer to T. LEvi-Civira, ‘ Vortrige aus dem Gebiete der Aerodynamik und verwandter Gebiete,” p. 30,
Aachen (1929).

3 M2
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438 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

became, it would always suffer the same fractional extension and compression at the
margin, and there is no reason to suppose that the tooth would ultimately be forced
against the bone. But since, on the basis of the present theory, the displacement
varies as the cube of the thickness of the membrane, then, as the thickness of the
membrane is increased, the tooth, displaced under constant load, continually approaches
the bone. Thus if, with a membrane of normal thickness, the loading of the tooth
reduced the thickness of the membrane at a point on the margin by one-tenth, then,
with a membrane of twice the thickness, the same load would reduce the thickness
by two-fifths, and, with a membrane of three times the thickness, the same load would
reduce the thickness by nine-tenths, and so on; with a slightly thicker membrane,
the effect of loading would be to force the tooth against the bone.

The component of the displacement of a point in the membrane, in a direction
parallel to the surface of the root, is of the order of the square of the thickness of the
membrane, while the component normal to the surface of the root is of the order of
the cube of the thickness. The components of strain are of the order of the thickness
of the membrane, so that the strain is a ‘ small strain.”

The subject of the paper was suggested to me by Professor H. K. Box, the problem
having arisen in connection with his researches into the mechanical causes of diseases
of the periodontal membrane. I am also indebted to him for valuable information
and advice on the dental aspects of the problem. One of the principal objects of the
investigation was to determine the position of the centre of rotation of a tooth under
the action of a force applied to the crown. This question, which has interested résearch
workers in dentistry, is answered in §§ 11 and 14 in respect of certain model teeth
having membranes of constant thickness (a simplification unfortunately rendered
necessary for mathematical reasons).

But perhaps a more important deduction in the present paper (involved qualitatively
in the basic hypothesis of incompressibility) is the considerable local variation in pressure
in the membrane when the tooth is subjected to the forces arising in occlusion. This
has not, I think, been taken into consideration previously. I am not competent to
discuss the physiological consequences of such local variations in pressure, and shall
merely emphasise the fact that the application of a force of considerably less than
one pound weight may reduce the pressure to zero at some points in the membrane,
while raising it to two atmospheres at other points. In deducing numerical results
in this connection, the only data required are geometrical measurements of teeth ;
the rigidity drops out of the equations, as also does the thickness of the membrane.
The weakest point in the argument is the assumption of uniform thickness of the
membrane, but we can at least hope to have obtained results of a rough quantitative
significance.

Throughout the paper, the argument is kept as general as possible, and numerical
values are only inserted in order to obtain final numerical results. While the arguments
of Part I are very general, and would apply (as far as they go) to a multiple-rooted
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tooth, we shall concentrate our attention for final numerical results on the upper central
tooth, for which we shall employ the following average measurements :—*

Lengthoverall . . . . . . .. .. .. .. .. 0-88inches.

Crownlength . . . . . . . . . . .. .. ... 0-39

Rootlength . . . . . . . . ... .. ... 049

Mesio-distal diameter at neck (side to side) . . . . 0-24

Labio-lingual diameter (front to back) . . . . . . 027
Synopsts.

The first part of the paper (§§ 2-7) deals with the general problem of the equilibrium
of a thin homogeneous isotropic incompressible elastic membrane, confined between
and attached to, two rigid bodies, one of which is given a prescribed displacement.
The results are mathematically the same as those first given by ReynoLps (loc. cit.
supra) in connection with the theory of lubrication, but an attempt has been made to
present the argument in a more rigorous form than has hitherto been done, with
reference, of course, to the elastic problem, rather than to the hydrodynamical. It is
pointed out how the theory of elasticity is generally concerned with limiting solutions,
or principal parts of solutions, of a system of partial differential equations containing
a parameter. The manner in which the parameter enters into the present problem
is different from that in which it enters into ordinary problems of elasticity, in that, in
the present investigation, the range of the equations depends on the parameter. By a
special choice of co-ordinates, this range is made independent of the parameter. Tensor
notation is employed, and the principal results are contained in equations (56) to (59).

The problem of the tooth is actually a three-dimensional problem, but as the analogous
two-dimensional problem presents some interesting and simple features, it receives
attention in Part IT (§§8-11). The determination of the pressure in the membrane
in terms of the displacement of the tooth is reduced to quadratures in (71) and the
displacement of the tooth is connected with the applied force-system in (80). In §9
the positions of the points of maximum and minimum pressure are investigated, and it is
found that these points are in general arranged on a circle, having for centre the centre of
rot_ati_on' of the tooth, and for radius the radius of gyration of a fictitious wire, coincident
with the longitudinal section of the root, with a linear density equal to the inverse
cube of the thickness of the membrane. The results are applied, in § 11, to a wedge-
shaped model of the upper central tooth. It is found that the centre of rotation lies
near the middle point of the root, on the side away from the apex (see (89)). The
““ critical ” axial load which, when applied as a pulling force, reduces the pressure at
the apex to zero, and when applied as a pressure, raises the pressure at the apex to
two atmospheres, is found to be approximately 0:65 lbs. The critical transverse
load (i.e., that which reduces the pressure to zero at the point of lowest pressure). is
approximately 0-45 lbs. The points of maximum and minimum pressure are located,
and a graph shows the distribution of pressure under transverse load.

* These figures are taken from G. V. BLack, ¢ Dental Anatomy,” Philadelphia, p. 19 (1902).
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Part III (§§ 12-14) deals with the case of a root of revolution. The argument is,
for the most part, confined to the case where the membrane is of uniform thickness.
The determination of the pressure in the membrane is again reduced to quadratures.
§ 13 deals with the symmetrical case where the tooth receives a two-dimensional dis-
placement ; the loading corresponding to a given displacement is investigated.
§ 14 treats the case of a model of the upper central tooth whose root is a right circular
cone ; this is not a bad approximation to reality. The centre of rotation is found to
lie in the half of the root farthest from the apex (see (142)). The critical axial load
(defined as above) is found to be approximately 0-38 lbs., while the critical transverse
load is approximately 0-19 lbs. (The critical load is in every case directly proportional
to the atmospheric pressure, to which we have assigned, in making the numerical
calculations, the value 15 lbs. per sq. in.) The lines of constant pressure on the root
are shown in fig. 14.

Finally, in order to get some idea of the magnitude of the displacement of the tooth
corresponding to an assigned load, there being no data available as to the rigidity of
the periodontal membrane, we make the assumption that it has the rigidity of rubber.
This leads to some remarkable results. The critical axial load of 0-38 lbs., applied
either as a pull or a push, causes an axial displacement of only 2-8 X 107" in., while the
critical transverse load of 0-19 lbs., applied at the biting edge, gives to that edge a
displacement of 8:9 X 107% in. Even though the rigidity were considerably less than
that of rubber (as it well may be), the above displacements are so extremely minute,
that it may be claimed for the present theory that it provides an adequate explanation
of the tightness of the teeth.

ParT I.—GENERAL THEORY.

§2. Notation and equations of equilibrium of an incompressible homogeneous isotropic
- elastic medium.

Let us refer the points of an elastic medium to any curvilinear co-ordinate system
at (1 =0,1,2). We shall give to italic indices the range 0, 1, 2, and to Greek indices
the range 1, 2, with summations through these ranges in the case of a repeated index,
in accordance with the usual convention.

The line-element will be of the form

d82 == a,;j dwi dwj ............. (1)

We shall denote by A, the operation of taking a covariant derivative with respect to

the tensor a,;, and write
Al = a.‘JAj,

where a¥ is the co-factor of @, in the determinant |a,|, divided by that determinant.
Then for an invariant V we have

ov .
av=3, . @
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and for a vector Vi or V; (= a; V),
oV,

AVJ——+F;'ka, AV, = ,kAV"=—-——F Vi oo (3)
where F}, is the Christoffel symbol of the second kind,
— 1l aa’kl
Fjy = 3o <8x" ke am’\
For a mixed tensor Vi we have
Avi=Ne o mviomVE L @)

Denoting by «* the (infinitesimal) components of displacement, we have for the
covariant components of strain*

eij = 1‘2- (Azu] + Ajui), C e e e e e e e e e e (5)
and if, as we shall assume henceforth, the medium is tncompressible, we have the relation
=Auw=0. .. ... ... B (1))

Assuming now that the medium is homogeneous and isotropic, and denoting the
covariant stress tensor by T, we have the stress-strain relations

Ty=—pa; +2pe, . . . . ... .. (7)

where p is the pressure in the medium and p the rigidity, a constant. We shall assume
that there are no body-forces (we neglect gravity): the equations of equilibrium are
then

Aly=o0, . ... ... .. e . (8)

which, on making use of (6) and the fact that A,A; = A /A, (since the space is Ruclidean),
reduce to
Ap = wA/A W, Ap=aVop/or) . . ... ... (9

It follows immediately that p satisfies the harmonic equation
AAp=0, . . .. . ... (10)
and that the components of displacement satiéfy the biharmonic equations
NAA AW =0. . . .. ... ... (11)

The fundamental equations (6), (9), and the deductions (10), (11), are familiar in
the theory of slow steady motions of viscous liquids.

* For a more detailed account of the application of tensor notation to elasticity, see, for example,
ArpELL, ‘ Mécanique Rationnelle,” vol. 5, p. 91 (1926).


http://rsta.royalsocietypublishing.org/

A\

/ y

A

Py
{ )\
e A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
V. \
b \

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

442 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

§ 3. Elastic problems as parametric problems.

The argument just given, in which we spoke of *“ infinitesimal ~’ components of dis-
placement, has the degree of rigour customary in arguments on the theory of elasticity,
which has not received the same critical attention as has been accorded, for example,
to potential theory. The problem of the ‘ thin” membrane, however, forces us to
take a somewhat deeper view, and to realize more accurately what we are really doing
in problems of elasticity. It is true that the general equations which we develop might
be found in a few lines by following the intuitive arguments of REvNoLps (loc. cit.)
in connection with the theory of lubrication, but to adopt this point of view would be
to lose sight of some of the most interesting aspects of the problem.

If we suppose that an elastic medium is subjected to given finite surface displacements,
or given finite surface tractions, and if we suppose that the elastic moduli are finite,
the determination of the displacement in the medium will be difficult and of doubtful
physical validity without well-defined relations between stress and strain for the case
where the strain is finite.  'What we actually do in most elastic problems is to introduce
implicitly a parameter ¢ ; we assume that the elastic moduli are functions of ¢, tending
to infinity as ¢ tends to zero, and that the surface displacements (when assigned) are
also functions of ¢, tending to zero with e. We solve the differential equations for the
components of displacement as if they were valid for finite displacements ; the solutions
will be functions of ¢, and the components of stress (as given by the stress-strain relations)
will also be functions of . The solution of the elastic problem is furnished by taking,
for the components of stress, the limits of the solutions as ¢ tends to zero, and for the
“ infinitesimal >’ components of displacement, the principal parts (as = tends to zero)
of the solutions of the differential equations.

The above process, valid for most elastic problems, is not applicable to our problem
of the thin membrane, because we are not going to suppose that the rigidity tends to
infinity. (One of the moduli, it is true, has been made infinite in making the medium
incompressible, but that is a limiting process that is over and done with.) The para-
meter does not enter our equations through the elastic moduli, but through the thickness
of the membrane, which, we shall suppose, tends to zero with . In this case, then,
we have quite a different situation from that which obtains in ordinary elastic problems.
The parameter ¢ does not at first appear explicitly in our differential equations (since
we do not assume that the rigidity depends on ¢), but the range of validity of the
differential equations depends on ¢, and the surface displacements also depend on .
By introducing a new system of co-ordinates, whose range is independent of ¢, we bring
our problem into line with ordinary problems in elagticity ; the parameter ¢, after the
transformation of co-ordinates, appears explicitly in the differential equations.

§ 4. The problem of the thin membrane.

Let S and T be two rigid bodies ; the same letters may, without ambiguity, be used
to denote their surfaces. Let the region between them be filled (wholly or partially)
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with an incompressible elastic membrane of finite rigidity p, the membrane being
attached to both surfaces at every point where it comes into contact with them. There
are two leading cases, shown in figs. 1¢ and 1b. TIn the former, the membrane forms
a closed shell ; in the latter it is terminated at a curve C drawn on T. More complicated
circumstances may be considered under this latter case, the membrane being multiply-
connected on account of holes. The simple case of fig. 1b is that of the tooth, and with
it we are primarily concerned, but we can, up to a certain point, discuss all such cases
on a common basis.

Fia. la. Fia. 1.

The problem is as follows. The socket S is held fixed, and the tooth T is subjected
to finite external forces. It is required to investigate the stress, strain, and displacement
in the elastic membrane, assuming that its thickness is small. It will be assumed
that the components of strain are small, and this assumption will be justified by showing
that a small strain is capable of giving equilibrium when finite forces are applied to T.

If the components of strain are small, then by (7), the components of stress are given
approximately by } -
Ty=—mpa;; . . . . . ... .. (12)

in other words, the principal part of the stress consists of the pressure alone.* Since
the forces applied to the tooth must be balanced by this pressure, it follows that the
pressure p must undergo finite variations as we pass over the surface of the root of the
tooth.

Analytically, our problem may be roughly described as follows. We have to find
solutions p, v of the equations (6) and (9), such that A are small, while the tangential
component of the pressure gradient is finite. As to boundary conditions, the displace-
ment on S is zero ; the displacement on T is a rigid body displacement, whose order of
magnitude will be determined in the course of the argument, and which we may regard
tentatively as prescribed. In the case of fig. 15, we shall impose the further boundary
condition p =P on the normal section of the membrane at the bounding curve C,
where P is a given constant (the atmospheric pressure). If this problem can be solved
analytically, we can determine the force-couple resultant of the elastic forces exerted
by the membrane on the tooth, corresponding to a prescribed rigid body displacement

* But the principal part of the stress-gradient is not the same as the gradient of the principal part of the
pressure, since, although the first derivatives of the displacement in the membrane are infinitesimal, the
second derivatives are not infinitesimal ; ¢f. (56).

VOL. COXXXI.—A, 3N
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of the tooth. We can then invert the solution, and find the displacement of the tooth
corresponding to prescribed external forces applied to the tooth. The solution will
then be complete.

§ 5. Normal co-ordinate system. Transformation of equations.

We have to consider a singly infinite system of pictures of the unloaded equilibrium
state as the thickness of the membrane is made to tend to zero. Let us decide to
regard the surface S as fixed once for all, and on it let us choose a general curvilinear
co-ordinate system z* (« = 1, 2). Let P be any point in the membrane and PN the
perpendicular let fall from P on 8. Let us write 2° = PN. Then &' (+ = 0, 1, 2) form
a system of curvilinear co-ordinates in space, which will be regular provided that PN
is less than the smaller of the two principal radii of curvature of S at N. Since we have
only to deal with a region adjacent to S, we may assume this condition to be satisfied.

Fie. 2.

Let us write the equation of the surface T in the form
=cr (2, 2?), . . . . ..., (13)

where 7 is a regular function over S, and ¢ is a constant by which we control the thickness
of the membrane ; it is the parameter of the elastic problem and will be made to tend
to zero.

Now let P be any point of the membrane with co-ordinates z*; let us write

Then throughout the membrane £ has the range 0 to = (', ?).

Let us now transform the equations (6) and (9) by changing the independent variables
from 2%, 1, 22 to &, x, x2.

From the nature of the co-ordinate system, 2%, ', #?, we have

aao B O, aoo == 1, alao == 0, aOO = ]. ....... (15)

v‘Heﬁce, for the Christoffel symbols, we have

: oa
0 0 0 8 — 1
B = FaQ - Eoo =0, Fap = % a;’ s F;o = 50"

PP
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any Christoffel symbol with two or more zero indices vanishes. All the surviving
Christoffel symbols are regular functions of 2°, 21, 22, and we may suppose them expanded
in power series in 2°. Thus, if we write

" Fi i
<(ax0)7:>x0=0 = ij(n)a ............ (17)

TR T G ‘ '
ij=n§0;b—' e"i ij(n), ............ (18)

we have

where T}, are regular functions of 21, 2. Functions of derivatives of the Christoffel
symbols may be similarly expanded.

Noting that
0 10
5—@ = ; —a—a 3 e e e e s s e e s s e e (19)
we have by (3)
1 ou® 1 ou®
0o 2 9% o 10U -
Agu ==z Agu ;9% + Fou?,
o . . . (20)
A = + Foauf, Au® = BZ“ + Feu? + Feoue.
Thus the equation of incompressibility (6) becomes
0 o
;1-%%+%%+F‘;yw+]i‘§ou°=0 ........ e
We have also by (4) and (20)
AoAguo =L 20 )
0 2 9§z’ ,
AvAg =1 20 1 2, 2 +< W + R
T aTe T b+ BB
’ ou’ 02u®
a — Bl I RO % R, 0
Adut =a { € F‘%‘" FR i “ﬁa ¥ +F aott
ouY 0
oW, 20 (L TR — PR e, b (22)

1 ou’ ou’ 0
AAw = a*® [—; ng—é% + 2F% 5%5 + ('a—gﬁ FYy + FrFo — FiﬁF§0> u?

o2 uY y 0U oy ou?
ox* 0xf + 2F“‘8_w’§ Fos or’

0 i i '
+ <5§5 FY + FrFo — FaﬂF;(f?) “8] g
3N2

+
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Thus the equations (9) become

+ 27, 22 2“5 + (5;,3 B, FRF, — LR o |, (29)
and
w2y +2ﬁon%—f~ s zﬁ;g (s o -+ Py
+ p.a»uﬁ[2FZO e+ <a B]i‘aO + FyF, — FgﬁFgo) ud
bl o, 2w, Z—;"— (e -+ TR — BBy | (2

Equations (21), (23) and (24) are the exact transformation of (6) and (9), the independent
variables being now £, z', 22. The co-efficients of the type a*®, and the F’s, are to be
considered as power series in <£ of the type (18). If these expansions are written in
the equations, the equations become explicit in the parameter, but the range of values
of &, 2", #2, for which the equations are valid does not depend on .

§ 6 The formal process of integration.  Equations for the principal parts of the solutions.

We now follow the method of §3. We wish to find the principal parts of «*, p,
satisfying the equations (21), (23), (24) for 0 =< ¢ =< = («%, 2?) and for the range of
values of 21, 22 corresponding to the portion of the surface S covered by the membrane ;
the boundary conditions are that »’ shall be zero for £ = 0, that for £ = < the values
of u' shall be equal to the components of displacement due to the rigid body displacement
of the tooth, and that, in the case of a membrane with an edge, as shown in fig. 15,
p shall have an assigned constant value at the edge.

We shall assume that the equations admit (for a range of values of ¢) a set of solutions
', p, which are expressible in power series in ¢, the co-efficients being regular functions
of &, x!, x2. Let us write

U = Uy + Ul + Ul + ...,
ut = ul +euly + Ul 4+ ..., ;.. oo (25)
P = Ppo + P + P + -

Let us write the boundary conditions as follows :—

for{ =0, w=0: b
fort =, uw=c¢ [5%1)‘ —+ &2 sz) -+ €3 323) 4+ ... L ..... (26)
for f (at, 2?) =0, p =P, j

where f (#', 2%) = 0 is the margin of the membrane (if it has one). We have omitted,
for ¢ = =, terms independent of ¢, since the displacement of the tooth is certainly to
tend to zero with =. B, are vectors whose components are functions of z*, 2* only.
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The formal method of solution is the following. We substitute from (25) in (21),
(23), (24), and thus obtain four equations of the type
X(_z) g2 + X(__l)ﬁ_z + X(O) + X(l) € + X(z) 2 + cee = 0, ..... (27)
in which the X’s are expressions in v, p and their derivatives with respect to &, a*, *.
Since (27) is to hold for a range of values of ¢, each X must vanish separately. Hence
we get a sequence of equations for u{,, P, with the boundary conditions
for£ =0, w,=0 @®=0,1,2 ..):
for& =, wly=0, Up=208L, n=1,23,...): (28)
forf(a*, 2*) =0, po=P, pmy=0 ®=1,23,...).
Equivalently, we are to pick out and equate to zero the coefficients of the various powers
of cin (21), (23), (24). Thus we obtain from (21) the three following equations :—

0
ouy”

0%
auo a a
-Fg-) + % + Foyo vl + Faoo iy =0, . . . . .. . (30)

Uy |, ouf
Tg) + 5 T EFaw Wy + Fiyo uly + EFioq wlo + Floo uty = 0. . . (31)

It will be remembered that the F’s occurring here are functions of 2* .2 only. Also
from (23)

2 0% . ou
g)éo) =p aa(21) _ ”a(&ng(o)—a-éf’-), ........ (32)

where we adopt the notation ¢ to indicate that the value is calculated for £ = 0.
- Also from (24)

32u2’0) —

=0 (33)

When we combine (29) with the boundary conditions (28) we get

UWoy="0, . « . . v . . (34)
while (33) and (28) give
' o =0. . . . . .. (85)
We now deduce from (30) that u(, is a function of #', 2% only.  This is inconsistent
with (28) unless 8% = 0. Therefore, in order that solutions of the type considered may
exist, it 1s necessary that 8% = 0. We shall assume this to be the case. Now 8, is
a vector, defined by the set of rigid body displacements of the tooth T corresponding
to the values of ¢ in the range; its component Bf,, normal to S, vanishes over S.
Hence, in general, its other components must also vanish, and we must put

By =0. . . R IR . . (36)
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Then - :
Wh=0. . .o (37)
We deduce from (32) ’
. 0
—% _ 0, p(o) =S5 p(o) (ﬁl, (Ez). e e e e e R (38)
Also (24) gives, by virtue of (35),
8%1]1) — . (39)
P S e e e e e e e ,
so that, by (28) and (36),
o why=0. . . . . ... (40)
But (31) now gives
duly _ o (41)
3% s e e e e e e e

so that, in view of (28), we must take B, = 0, and hence, by the same aifgument' as
that prior to (36),

. @fg) = O. e e e e e e e e e e e e e e (42)
We have, in consequence,
/U/?z) B O T T e e e (43)
Collecting our results, we have
Uy =0, Uy =0, up =0, po=7po @' %), By =0,y =0, (44)
and by (24)
' a, Lo Fuly L . (45)

(0) awp = W 8‘22 )
while equating to zero the coefficient of <2 in (21) we have

U U .

By (45) we see that if we are to get a finite change in pressure as we pass over the
surface 8 in the limit when ¢ tends to zero, u},) must not vanish identically. Hence
we may state the following result :—

TuroreM I.—If a tooth T, separated from a socket S by a thin membrane of finite rigidity,
whose thickness is of the order of ¢, is subjected to finite forces, the tooth undergoes a dis-
placement which s of the order of <3 ; inside the membrane the tangential displacement
ts of the order of €2, while the normal displacement ts of the order of €.

The principal part of the pressure (p,), the principal part of the tangential displace-
ment (c2u”) and the principal part of the normal displacement (*uf;) are such that
the equations (45) and (46) are satisfied, the boundary conditions being

for £ =0, o uly =0, Uy =0: v
for £ = n, Uy =0, Ul = By } ....... (47)
for f (a*, 2?) =0, po=7P:
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By, is the principal part of the normal component of the displacement of a point
of the surface of the tooth T, considered as a function of #*, 22, and measured in the
sense from the socket S to T.

§ 7. The principal parts of the displacement, and the partial differential equation for the
pressure.

Integrating (45) and using (47), we obtain

1 ?
Uy = o EE—ma g, (48)

since py, is a function of #!, 4* only. (46) then gives, with the boundary condition at
£ = 0 from (47),

1 0 0
u?3) = é’; (%gg - 1€27) [8$7< ?ﬂ) ap(g)> + Faym)“?(’% apg)} Eaz ZB awy _gz_ (49)
there remains the boundary condition at £ = = to be safisfied, and this gives
. T8 ap ) 72 ov (0)
Blsy = 120 [8w7< % _8%%) + ool '8_31:(_’(’)} T rm W) 5 —E;‘];o-" . (50)
Now let the line-element of S be
de® = bda daf = agodade?; . . . . . ... (51)
we have then ‘
baﬁ - a’aﬁ(O); baﬁ = a&%, ........ ¢« o o (52)
and if G, are the Christoffel symbols corresponding to b,q, we have
Gg-y = FE‘Y(O)' « e e e+ e 2 s s e s s e e (53)

If, then, we denote by B, the operamon of covariant differentiation with respect to
b.gs and write

B*— b B
we have
~®, W ———>
—BBPy e e (54)
Thus (50) may be written
ol = 15 BBpw + -(B) (Bapo) = 73 B (<Bapo). - - - (59)
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Introducing infinitesimals again, since there is now no danger of confusion, we may
state the following result :—

TueoreEM IL.—The principal parts of the tangential components of the displacement
wn the membrane are given by
= (1/2u)2® (x* —h)Bp, . . . . . . . . . . (56)

and the principal part of the normal component s gwen by

u = — (1/2p) [§ (2P — 3h (2"P] B*B.p + (1/4) (2")* (B*h) (B,p), . . (57)

where p. is the rigidity of the membmne, h s its unfinitesimal thickness (b = <<), a° 1s the
normal distance of a pownt tn the membrane from the socket S, B, and B* are covariant
and contravariant operators with respect to the metric of S, and p ts the principal part of
the pressure in the membrane ; p satisfies the partial differential equation

B (*B.p) = 1208, . « « . . . . . . .. (58)

where B vs the principal part of the normal component of the displacement of the surface of

the tooth T, in the sense from S to T, considered as a function of arbitrarily selected curvi-

linear co-ordinates on the surface of the socket S, or on the surface of the tooth T.*
Probably the most useful form for the equation (58) is

3 0P
\/b = <«/b h3b36w3>: 1208, . .. ... . (69)

where b denotes the determinant |b,,].

As has been mentioned, there are two types of problem, namely, that of a closed
membrane, fig. 1a, and that of an open membrane, fig. 15, the margin being subject
to a specified pressure P. In the former, the pressure remains undetermined to an
additive constant ; in the latter that constant is determined. In either case we may
superimpose results ; that is to say, we may express B as the sum of normal displace-
ments 8V, ... B, caused by the several constituents of the rigid body displacement of
the tooth, and find p for each displacement separately, adding together the results,
and, if necessary, choosing the additive constant suitably.

If the surface S is developable, it is possible to find a system of surface co- 01d1nates
a1, 22 such that the line-element of S is

do? = (dat)® + (daP).

For these co-ordinates (59) takes the form
0 (122 (B3 J?_> — _ .
8x1< awl) + 8x2<k 12ppB. . o o 0 oo . (60)

* The above analytical results agree (except of course for the tensor notation) with those first given
by REynoLps (loc. cit.). His argument was intuitive, and it is not at all clear, without some such
argument as that just given, that the curvature of surfaces does not enter in some way other than in the
left-hand side of (58), where it is implicit,
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If the surface S is a surface of revolution, we may conveniently take 2! to be the
length of a meridian curve, measured to a general point from some specified section
normal to the axis of revolution, and 22 to be the azimuthal angle. If, then, R is the
radius of the circular section, normal to the axis of revolution and passing through
a general point of the surface S, we have

do? = (da')® + R2 (da®)?, . . . . . . . . . .. (61)
where R is a function of 2! only. Equation (59) becomes
L (e ) g LD (e )

& 5o (RE L)+ g g (4 B)—tzep (62)

Part II.—THE Two0-DIMENSIONAL PROBLEM.
§ 8. Statement of the problem.  Determination of the pressure in the membrane in terms
of the displacement of the tooth.
The problem of the tooth is, of course, actually a three-dimensional problem, but we

shall here investigate the analogous two-dimensional problem, which may be stated
as follows :—

Fia. 3.

Let the socket S and the tooth T be cylinders with parallel generators; let these
two cylinders and the membrane between them be terminated by two fixed planes
11, 1T, perpendicular to the generators. As usual, S is fixed ; T can move with a two-
dimensional motion parallel to the fixed planes, which we shall suppose to form smooth
constraints for T.  The boundary conditions will be as follows :—

(i) zero displacement on S ;
(ii) assigned rigid body displacement on T ;

(iii) assigned pressure P on the margin of the membrane, which we shall suppose to

correspond to generators of S ;

(iv) zero displacement at the planes II, II’ in the direction of the generators S.

Since the displacement considered in (iv) is what we have called a tangential displace-
ment in the membrane, which (¢f. Theorem I) is generally of the second order, it is a
matter of indifference whether we leave (iv) as above, or state that the displacement
in question shall be of the third order.

VOL. COXXXI—A. 30
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Let us introduce a co-ordinate system ', 2% on 8, such that «' is the distance to a
general point of S from an assigned generator, measured along the intersection of S by
a plane parallel to II, and #2 is the perpendicular distance from the plane II.

For the determination of the pressure p in the membrane we have (60), Whlch since
k is a function of 2* only, takes the form

3 62
aw1< 59%)4 B3 (axg’?:mu@. L (63)

The boundary conditions on II, 11" are, by (56),
oploar =0. . . . . . .. ... .. .. (64)

It is evident that p will be a function of #* only ; if we write ¢ = ', so that ¢ denotes
the arc of the section of S by II, we see that v the general two-dvmensional problem, the
pressure p satisfies the differential equation

d dp> _ 5
=\ (hs 1208, . . . . . .. (65)

with the boundary condition p = P on the margin of the membrane, which we may suppose
to correspond to 6 = 0 and ¢ = 1.
The thickness & of the membrane is, of course, supposed to be a known function of s.
It is clear that the problem is a purely two-dimensional one, there being, by (56), no
displacement parallel to the generators of 8.  We may therefore employ the language
of two dimensions, and refer to S and T as curves instead of surfaces.

Yy
A
)
__— .

Fic. 4.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. L. SYNGE ON THE TIGHTNESS OF THE TEETH. 453

Let us now take rectangular axes Oxy in the plane of the displacement. Let the
displacement of the tooth T be reduced to an infinitesimal translation with components
u, v along the axes of co-ordinates, and an infinitesimal rotation « about O. The
components of displacement of a point M of T are then

U — Yo, v+ ro,
and for the normal component 8, in the sense from 8 to T, we have

%’ (=ut ), . . (66)

B = —«u@+v@—|— wr
where these derivatives are calculated for the curve S, whose equations are supposed
to be known in the form z = x (s), y = y (5); we suppose the axes Ozy to be right-
handed (v.e., the rotation from Oz to Oy is counter-clockwise) and the direction in
which ¢ is measured is such that as we travel along S in the sense of ¢ increasing, T lies
on our left-hand side.

Substituting from (66) in (65) and integrating, we have this result :

TurorEM IIL.—In the general two-dimensional problem, the pressWe gradient along
the membrane vs given by

h“"%g:mp.(——uy—}-m-{—%mrz)m(), ..... ... (67)

where h 1s the thickness of the membrane, u, v, o the components of the displacement of
the tooth, r* = a* 4 42, and C is a constant of integration.

Let us denote by A and B, fig. 4, the margin of the membrane, corresponding respec-
tively to 6 =0 and o =1, and let M be a general point. Then since p =P at A,
integration of (67) gives

M M M M
p—P= ~12p,uj yh~2do + IQWJ ch=3ds -+ 6y J 12h=3 do — Cj b2 do. (68)
A A - A A

The value of the constant C is given by the boundary condition p == P at B; we have
in fact

B B B B ’
Cj b= do — — 12p.u[ yh=s do + 12“4 oh=3 do + Guwj r#h2ds.  (69)
A A A A

F:

If the membrane forms a closed cylinder, so that there is no margin, instead of two
boundary conditions we have only one, corresponding to the fact that p is single-valued.
The pressure p is again given by (68), but now P is an undetermined constant, while

B .
C is given by (69), in whichLis to be understood as an integration taken right round

the closed curve S. ‘
302
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We shall find it convenient to introduce the following notation :

-~

. B B 3
K©® = Lh—s do, K;D—_—_j hs do, K = | yh~* do,
A JA

B B B
KY = [ oh2ds,  KY= [ oyhrds, K= [\yzk—s da,

A

K® = K& 4+ K& = fnq.zk—s ds,
A

3

KO = [othsdo, K =[ gohsde, K= [ whosdo,
A JA A

o
Rewriting (68) we have the result :

THEOREM IV.—In the general two-dimensional problem, the pressure p at any point M
of the membrane is given by

(p— P) KO = — 12W<K<°>j yh=s do — K [ = dc>
M :
- 12u0 <K<°>[ b2 ds — K [ 17 ds

+ 6o (K“’) [ h=3 do —ij ), ... (71)

where P 1is the atmospheric pressure and u, v ,o are the components of the displacement
of the tooth.

§ 9. Points of mazimum and minimum pressure.

So far, both the origin and directions of the rectangular axes have been arbitrary.
Let us now temporarily choose for origin O the centre of rotation of the infinitesimal rigid
body displacement of the tooth. (This can always be done unless the displacement of
the tooth is a pure translation, a case which we shall discuss later.) We have then

w=v=0, . .. .. N 4]
and therefore (71) reads

/oM K@ ™ ‘
me:mmH 2h~3 do — K«»J Wode ) o . (73)
and the pressure gradient is
d K®
dp‘— 6pohs <7"2 K(”’) .......... (74)

Referring to (70), we see that K®/K® has a simple interpretation ; if we replace the
section of the membrane by a fictitious wire whose linear density is equal to 1/A%, then
K®/K® is equal to the square of the radius of gyration of this fictitious wire about the
centre of rotation 0.  Accordingly, by (74) and (65), we may state this result :

THEOREM V.—In the general two-dimensional problem, the points of the membrane
at which the pressure p has maximum and minimum values are situated on a circle whose
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centre is the centre of rotation of the tooth, and whose radius is equal to the radius of
gyration about that centre of rotation of @ fictitious wire coincident with the section of the
membrane by the plane of the displacement, and having a linear density equal to the cube
of the reciprocal of the thickness of the membrane.

The points of maximum pressure are distinguished from the points of minvmum pressure
by the fact that at a point of maximum pressure, the tooth approaches the socket as a result
of the displacement, while at a point of minimum pressure, the tooth recedes from the socket.

These results are illustrated in fig. 5, in which the arrows indicate the directions in
which the pressure increases.

Fie. 5.

If the displacement of the tooth is a pure translation, we cannot choose the origin
at the centre of rotation, which is at infinity. It is convenient to choose the origin
temporarily ot the centre of mass of the fictitious wire, so that by (70)

KO =K®=0.............. (1)

Since « is zero in the present case, (71) becomes

M

30
p——P:12p,JA(m)——yu)h*3dc, Y (1)
and the pressure gradient is

dp/do = 12ph73 (@v —yu). . . . . . . . . . . (17

Hence we may state the result :

TaroreM VI.—If, in the two-dvmensional problem, the tooth receives a pure translation,
the points of maximum and minimum pressure occur at the points where the membrane
18 cut by a straight line, drawn parallel to the direction of the translation through the centre
of mass of the fictitious wire previously described.  The pressure is a maximum or &
mansmum according as the tooth approaches or recedes from the socket.
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This result is illustrated in fig. 6, in which the arrows indicate the directions in
which the pressure increases.

translation

Fia. 6.

§ 10. Connection between the applied force-system and the displacement of the tooth ;
centre of rotation.

Let us now consider the applied force-system which produces the displacement of
the tooth. We shall suppose that the part of the tooth outside the membrane is
subject to the uniform atmospheric pressure P ; this pressure will not be counted as
an applied force.

Taking again general rectangular axes in the plane of the displacement, the applied
force-system may be reduced to components X, Y along the axes and a couple N.
Since the principal part of the elastic traction on the tooth arises from the pressure
p alone, and since a uniform pressure P has zero resultant, the conditions for the

statical equilibrium of the tooth are easily seen to be
B B B
X=b[ p—P)dy, Y =—b[ (p—P)dr,N=—b| (p—P)@@de +ydy), (18)
where b is the distance between the parallel planes II, II" bounding the membrane, or,
in other words, the width of the tooth. Using the boundary conditions p = P at

A and B, we obtain by integration by parts
B n 3
X=—b ydp, Y=b[widp, N=p[rdp .. .. @)
JA A A
Substituting for p from (71), we obtain the following result :

TeeorEM VIL—If, on the general two-dimensional problem, the applied force-system
X, Y, N, produces o displacement u, v, o, in the tooth, then the force-system is connected
with the displacement by the equations

XKO/b = 12pu [KOK® — (KP)] — 12p0[KOKE — KOKY]

— 6o [KOKY — KOK®M]

~

YK9/b = — 12pu [KOK2 — KOKP] + 12p0 [KOK2 — (KOR], L (80
+ 6pe [KUK® — KORo], [ )
NKO/b = — 6pu [KOK® — K®K®] + 6p0 [KOK,® — KOK®]

+ 3po [KOK® — (K@), |
where the K’s are geometrical constants of the tooth and membrane, given by (70).
9 ! Y
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The above equations may, of course, be solved for the components of displacement
%, ¥, », In terms of the force-system X, Y, N, but on account of the complexity of the
expressions, we shall not trouble to write them down. v

We may simplify (80) by a special choice of axes. If we choose the origin at the
centre of rotation, we have u = v = 0, and the first two terms on the right-hand side
of each of the equations disappear. But this is not a very useful choice of origin, because
it depends on the displacement and therefore on the applied force-system. It is
better to choose temporarily the origin at the centre of mass of the fictitious wire, and
the axes in the directions of the principal axes of inertia of the wire with respect to that

point. We have then
KP=KP =K@ =0, .. .. ... .... (8)

and hence, simplifying (80), we may state the result :

TreorEM VIIL—If, in the general two-dimensional problem, the co-ordinate axes
covncide with the principal axes of inertia of the fictitious wire previously described at its
centre of mass, then the applied force-system is connected with the displacement of the tooth
by the equations

X/b = 12puK® — 6p oK,
Y/b = 12p0K® + 6p0K®,

@
N/b = — 6puKP + 6p0K + 3p.0 [K"" - & )2] ;

|
|
SRR

where the K’s are given by (70).

§ 11. The wedge-shaped model.

The simplest geometrical form which we can assign to the two-dimensional root,
consistent with a rough approximation to reality, is that of a wedge. We shall
accordingly discuss the problem of the wedge-shaped model root, assuming for simplicity
that the membrane is of uniform thickness .

Y

o —F—o

Fié. 7.
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We shall choose the origin at the apex of the root, and the axis of « along its central
line.  We shall adopt the following notation, the numerical values being those which
we shall employ in making calculations for the upper central tooth (c¢f. § 1) :

Length of root = a = 0-49 in. ;
Thickness = AB = 2¢ = 0-27 in. ;

Width = b = 0-24 in.* ; L (83)
Angle of root = 2 ; o = tan™ (¢/a) = 15° 25" ;
Distance of biting edge from apex = ¢ = 0-88 in. ;
Area of rectangular cross-section at margin = A = 2bc = 0-065 sq. in.§ J
Calculating the values of the K’s from (70), we obtain the following values : -
K©®=2ah3seca, KP=a*h2seca, K’=0,
(84)

1

K® =2ah~* sec o, K®=0, K = 2a3h™ sec « tan «, L
K® = 203573 sec?® a, |
K® = la*h ™ sec® o, K =0, K@ = 205573 sec® «. J

Substituting these values in (80), we obtain the following result :

TrrEorREM IX.—For the wedge-shaped model, the applied force-system is given in terms
of the displacement of the tooth by the following formule :

X = 8puabh™® sec « tan? a, 1
Y = pa*bh™® sec a (20 4 aw sec? a), L R 13
N = patbh™® sec® o (v + %00 sec? «) : j

the dusplacement of the tooth is given in terms of the applied force-system by the formule :

h? cos o cot? a b
=" " X,
8r.a®b
.k cosa N |
v o= aah <SY — 1‘5 — cos? oc), L (86)
15h% cos® o« (o N \
= " (2=costa — Y ).
@ rath < a * ) J
Hence the co-ordinates of the centre of rotation are
g Y_ __a 15 (N/a) cos® o — 8Y
o 15cos?a 2(N/a)cos®a —Y ’
(87)
S X
I e T 120 s (N/a) cos? o« — Y

* 'We shall adopt this numerical value for the purpose of estimating the order of magnitude of results,
while recognising the obvious insufficiency of the two-dimensional théory as a representation of reality.
T The area of the actual cross-section, if we suppose it elliptical, is 0-051 sq. in.
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If the applied force-system consists of a single force, whose line of action cuts the
axis of the root at a distance p from the apex, we have
N =Y,

and the co-ordinates of the centre of rotation become

o= a 15 (p/a) cos® « — 8
15 cos? « 2 (p/a) cos? « — 1~

__a 1 X
Y= 120 it « 2 (¢/a) cosra —1Y"

We note that the abscissa « of the centre of rotation depends (for a given wedge-shaped
root) only on the distance from the apex to the point where the line of action of the
applied force cuts the axis of the root, whereas the ordinate y depends, not only on
this distance, but also on the inclination of the applied force to the axis.

To get a definite result for the wedge-shaped model of the upper central tooth, let
us suppose that the single force is applied at the biting edge of the tooth, which we
shall suppose to lie on the axis of the root produced. We are then to put ¢ = 0-88 in.,
and therefore p/a = 1-80. Equations (88) then give, for the centre of rotation of the
wedge-shaped model of the upper central tooth

z=0-520 =0-25in., g =0-050a (X/Y) =0-024 (X/Y)in. . . . (89)

The value of # corresponds to a distance along the axis from the apex of a little more
than one half of the length of the root; the value of y is small (and the centre of
rotation is consequently close to the axis of the root) unless the applied force is nearly
axial. This is shown by the following table :—

WeDGE-SHAPED MoODEL oF THE UpPER CENTRAL ToOOTH.

Inclination to axis of root of Distance of centre of rotation
force applied at biting edge from axis of root = y.
= tan—! (Y/X).
0° 0
1° 2:9¢ =1-4in.
2° 1-4a = 0-701in.
10° 0:28¢ =0-14in.
20° 0-14¢ = 0-067 in.
30° 0:087a = 0042 in.
45° 0:0500 = 0-024 in.
90°. 0

We may sum up the preceding results in the following manner :

TrEoREM X.—For the wedge-shaped model of the wpper central tooth, with a membrane
of uniform thickness, the application of a force at the biting edge makes the tooth turn about

VOL. CCXXXI.—A. 3P
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460 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

a centre of rotation which lies close to the axis of the root, unless the applied force is nearly
axial ; the perpendicular, dropped from the cenire of rotation on the axis of the root, cuts
that axis at a distance from the apex slightly greater than half the length of the root.

Let us now consider the distribution of pressure in the uniform membrane of the
general wedge-shaped model.  This is given in terms of the displacement of the tooth
by (71). Substituting for the K’s from (84), carrying out the integrations, and sub-
stituting from (86) to obtain (91), we have the following result :

TrEoREM XL.—The pressure vn the uniform membrane of the wedge-shaped model s
given in terms of the displacement of the tooth by the formula :

p— P = — 6puh 2 tan a sec « (a* — 2?)

| + 2ph3seca.x (@ —z)[3v + (@ + ) o sec?a], . . . . . (90)
- where the upper sign refers to the side of the root for which y > 0, and the lower sign to the
side for which y < 0: the pressure 1is given in terms of the applied force-system by the

Sformula :

2\ X

12tanax/ o <N 2> rf N o ﬂ
£ a<1 a)[(sY 52 costa -—}~a<10a(}08u 5Y) |, . (91)

where A = 2ab tan «, the area of the rectangular cross-section at the margin of the membrane.
Any applied force-system which reduces the pressure to zero at some point, or
points, of the membrane, without making the pressure negative at any other point,
~we shall call a eritical load.
Considering the case of a purely axial load, the pressure is given by
: o\ X
p=P~%<l—a—2'>K, ........... (92)
and therefore the pressure increases or decreases steadily from the apex to the margin
according as X is positive or negative. Hence we have the result:

Turorem XIL.—The critical axial load for the wedge-shaped model is a pulling force
| X = 2AP, .. ... e (93)

where A s the area of the rectangular cross-section at the margin of the membrane, and P
18 the atmospheric pressure.  For the wedge-shaped model of the upper central tooth,
this gives ‘

X=0651bS, .« v v v vu (934)

when the atmospheric pressure is 15 bs. per sq. in.
The following result is an immediate consequence of (91) :—

TarorEM XIIL.—Under a purely transverse load (X = 0), the pressure at the apex
- of the wedge-shaped model is equal to the atmospheric pressure.
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If, as before, we suppose that a single transverse force Y is applied at the biting edge
of the upper central tooth, we are to put

N = pY = 1-80aY ;
hence the following result is a consequence of (91) :

TaeorEM XIV.—The distribution of pressure in the membrane of the wedge-shaped
model of the wpper central tooth, under the application of a transverse force of Y lbs. at
the biting edge, is given in lbs. per sq. in. by the formula

p=P;{;600Y£—6<1~—§><§——-0-46>, ....... (94)
a a/ \a ) :

where the dual sign us to be interpreted as in Theorem X1I.

We note that the pressure is equal to the atmospheric pressure, not only at the
margin of the membrane and at the apex, but also at the points for which & = 0-46a,
a value which is, of course, independent of the values of Y and P.

There are four points of maximum and minimum pressure, namely, those points

for which
£ =078¢=0-38in., 2 =0-20¢=0-10in. . .. . . (95)

It is easy to distinguish the maxima from the minima by the fact that at a maximum
the tooth approaches the socket as a result of the displacement, which is a rotation
about a point close to the middle point of the axis of the root. In fig. 8, M;, M; are

Fia. 8.

the points of maximum pressure and M,, M, are the points of minimum pressure.
We obtain the following values :—

Pressure at M; = P + 33Y lbs. per sq. in. ;
Pressure at M, = P — 25Y lbs. per sq. in. ;
Pressure at My = P -+ 25Y lbs. per sq. in. ;
Pressure at M, = P — 33Y Ibs. per sq. in.

3 P2


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

YA

=0

'am \
P\

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

462 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

Hence we see that the critical transverse load applied at the biting edge of the wedge-shaped

model of the wpper central tooth is
Y="P/33=0451lbs,, ... ....... (96)

when the atmospheric pressure is 15 lbs. per sq. in.

Fig. 9 shows the pressure distribution on the two sides of the wedge-shaped model
of the upper central tooth for the critical transverse force Y, applied to the biting edge.
The points M;, M,, M,, M,, are those shown in fig. 8.

2:0 p M
18
-6

144

Fic. 9.

Part III.—THE ProBLEM OF THE TooTH oF REVOLUTION.
§ 12. Determination of the pressure vn the membrane in terms of the displacement of the tooth.

Let us now consider the case where the socket S and the root of the tooth T have
surfaces of revolution about a common axis. This implies that the thickness of the
membrane, considered as a function of position over the surface of the root, has the
same symmetry of revolution. ~We shall suppose for simplicity that the margin of
the membrane is a circle normal to the axis of revolution, although there is in reality
a considerable deviation from this.

16. 10.
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Let us take surface co-ordinates o, ¢, on S (or on T), where ¢ is the length of the
meridian measured to the general point from, the margin of the membrane, and ¢ is
the azimuthal angle. Equation (62) is then satisfied by the pressure p in the form

1
R&A £)+m5£~dmm, ......... (97)

where R is the radius of the section ¢ = constant, & is the thickness of the membrane
(a function of ¢ only), . is the rigidity, and g is the normal displacement of T, counted
positive when away from 8, The boundary condition is

p=2P for c=0, ... ........ (98)

where P is the constant atmospheric pressure, together with the condition that p shall
be single-valued for ¢ = I, where [ is the length of the meridian from margin to apex.
In (97) B is a function of ¢ and ¢, known when the infinitesimal rigid body displace-
ment of T is known. To express it, let us introduce rectangular axes having the apex
O for origin and the axis of symmetry for z-axis. The displacement of T may be
resolved into infinitesimal translations u, v, w, in the directions of these axes, and
infinitesimal rotations o,, w,, ©s, about them. The displacement of a point z, ¥, 2,
of T has components

~

U — Yog + 20, V—20;+ Tog, W—To,-+Yo;, . . . . (99)

and hence we find, if ¢ is measured from the axis of ,

_ . dR dz / dx dR
=—u 5 +cos¢[vc?~ < -}-R >]+s1n¢[ wz\ d+Rdo->]
(100)
Hence we may state the following result :—
TurEorEM XV.—In the case of a tooth whose root is a surface of revolution and whose

membrane has the same symmetry of revolution, the pressure in the membrane satisfies the
partial differential equation

w3

1

+RM& 9o
+ 12p cos ¢ [vzl%—{— { —{—sz):l

+ 12 p.Slngb[ ‘—i-g;— ( +RZO_R>} ... (101)

The component o, does not appear in the above equation, since it contributes nothing
to B. Except for the factors cos ¢ and sin ¢, the right-hand side of (101) is a known
function of ¢ ; it is therefore obvious that we should seek a solution of the form

p=1f()+g.(c)cos ¢ 4 gs(c)sing. . .. .. .. (102)
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When we substitute this in (101), we obtain the three equations

1 d (ppdf\_ 1o dR o
R <Rh3 = ) 1puz=, .. (103)
1 d [n1sdg A [ dx dR’
Rd6<Rh§ d6> Y ]2;w ? 1 12p0 os (25 +R——>, .. (104)
1d dg, hg dw dw dR

The boundary conditions for the functions f, ¢,, g, are

f(O) = P> gl (0) = Oa 92 (O) = 0’ U1 (l) = 0, 92 (l) = O’ st (]06)
the last two arising from the fact that p must be single valued at the apex.
From (103) we obtain
Rh3(—i=£ BRI O L (107)

where C is a constant of integration. Hence

f—~——6p.uj hwc+oj R ds +C, . .... (108)

where C’ is another constant of integration. To avoid a singularity at the apex, we
must take C = 0 ; then (106) gives ¢’ = P. Hence fis given by

f=7P — 6uu j:ers do. . (109)

We may state the following result :—
TrroREM XVI.—In the case of a tooth of revolution the pressure ot the apex is

(P)0=P—6y-u.” Rh3ds; . .. .. .. .. (110)

it is tndependent of all the components of the displacement of the tooth except the axial trans-
lation ; if the axial translation is zero, the pressure at the apex is equal to the atmospheric
pressure. ‘ 4 ' A

Let us now project on the plane through the apex normal to the axis of symmetry,
the vectors representing respectively the translation w, v, w, and the rotation w;, s, ;.
The two projections will be perpendicular to one another if

Voy + weg =0, orf vY/w=— wg/g. . . . . . . . (111)

If this condition is satisfied, the ratio of the right-hand sides of (104) and (105) 1s a
constant, and hence (on account of the boundary conditions (108)) the ratio g, : g, will
be a. constant, namely, the ratio v : w. We may state the following result :—
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TaeoreEM XVII.—When the displacement of the tooth of revolution is such that the
components of the vectors of translation and rotation in the plane normal to the axis of
symmetry are perpendicular to one another, then along the section of the membrane by the
plane through the axis of symmetry which contains the axis of rotation, the pressure p
depends only on the axial translation, being given by

p=P—6p.u£Rh‘3dc. e )

This follows from (102) and (109), since for the section considered,

tan ¢ = — v/w = — g,/gs.

The above theorem is of especial interest in the case of a two-dimensional displacement
of the tooth, to be discussed more fully later.

Let us now proceed with the integration of (104) and (105), without the above special
assumption concerning the displacement, but assuming that the thickness (k) of the
membrane vs constant. Introducing a new independent variable

L o
‘L'R"’ ............. (113)

so that £ =0 when ¢ =0, and ¢ = when ¢ =, the equations (104) and (105)

transform into

(#g/de?) — g = Fy (D), .« . oo L (114)

(Bga/d0) — gy =Fa Q) - o oo (115)

and

respectively, where we have written for abbreviation

'Fl(t)=1%§"” Clz:er‘“‘"’R< C+R ) ..... (116)
\
Fy(0) = lzk‘ijZ”é 12}‘;"’2R< +R%). A ¢ 5 L)

The differential equations (114), (115) for ¢;, g, have the general solutions
5 = 016 + o~ + 4ef ﬁe—*}?l (1) dn — o jie*Fl (\)da, .. (118)
g2 = Cyé 4 Cye™ + & ﬁe—*F2 (2) da - %«_fc Ji eF, (A)dar, . . (119)
where Cy, C';, C;, (', are arbitrary constants.

Let us consider the behaviour of these expressions as ¢ tends to infinity, i.e., as we
approach the apex of the root, where R = 0. Assuming that the curve whose revolution


http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

JA '\

’—‘]xt
NI
olm
~ =
oY)
o)
= uw

A \
1~

A A

SOCIETY

A A

OF

OF

Downloaded from rsta.royalsocietypublishing.org

466 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

generates the surface of the root is analytic and does not touch the axis of symmetry
at the apex, we have near the apex

$:a1R+C&2R2+ P S T (120)
and hence along a meridian
do® = da? + dR? = dR2[1 + (@, + 2¢,R + ...}, . . . . . (121)
so that _
g — %E S ‘1%‘[1 T (0 4 28R 4 PP (122)

Therefore, for large values of ¢, R is of the order of e¢. Now

_ _|12pvpdz | 12pe do R
B @)= [h3 RET 3R<wdR+R>:| Tr@rear . %)

and thus for large values of ¢, F, is of the order of R? or ¢7%. Hence it is evident that
|“ e, () aa, [ er, () an
0 } 0

exist, as also do the same integrals with F, instead of F,.

The boundary conditions (106) require that the constants in (118), (119) satisfy the
equations

Cl "‘}— C’l = 0, 02 + 0'2 - O, ........ (124)

and hence it is easy to see that the functions g;, ¢, satisfying respectively (104), (105)
and also the boundary conditions (106), may be written

o ¢
g1 = — sinh cj e=F, (1) dA — e~¢j sinhA B, (\) dn, . . . . (125)
¢ 0
. ® (3
g, = — sinh Cj e Ky (M) dr — ¢ j sinhx F, (A)da. . . . . (126)
¢ : 0
Let us now state our result.
- TarEOREM XVIIL—In the case of a tooth of revolution with a membrane of uniform

thickness h, the pressure p in the membrane is expressed in terms of the rigid body displace-
ment of the tooth by the formula

p =P — 6pub? FR ds +g,co8¢d +¢gasing, . . . .. (127)
0

where P is the atmospheric pressure, p is the rigidity of the membrane, u is the arial
translation, R 1s the distance from the awis of symmetry, o is the meridian distance from
the margin of the membrane, ¢ is the azimuthal angle measured from the plane of xy, and
91> 92 are functions of § and the components v, w, w,, ws of the displacement of the
tooth as gwen in (125), (126), ¢ being defined by (113) and F,, F, by (118), (117).
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§18. The case of a plane displacement : connection between the applied force-system and

the displacement of the tooth.

In the discussion of the preceding section the displacement of the tooth was general.
We shall now suppose that this displacement is a plane (or two-dimensional) displace-
ment in a meridian plane of the root. Let us choose our axes so that z = 0 is the plane
of the displacement. ~The displacement may be resolved into an axial translation u,
a transverse translation v, and a rotation e, about an axis through the apex perpendicular
to the axis of symmetry and to the transverse translation. The preceding theory
applies, but now, since w = 0, &, = 0, we have, by (117), F, = 0, and therefore, by
(126), g5 = 0. Accordingly, the general expression (127) for the pressure p is simplified
by the vanishing of the last term, so that, in the case of a plane displacement, the pressure
at any point of the membrane (of uniform thickness h) vs given by

p="P — 6pub3 r Rdo +gpcos . . . . . . .. - (128)
0 .

Along the meridian section perpendicular to the plane of the displacement (z.e.,
corresponding to ¢ = = 1iw) the pressure is given by the first two terms of this expression.

Tt is evident that the maximum and minimum values of p-occur in the section of the
membrane by the plane of the displacement (¢ = 0 or =) ; using the expression (125)
for.g,, we see that the points of maximum and minvmum pressure may be determined by

the equations ,
¢ =0o0rm,
® . (129) .
6puh3R2 + cosh Cj e*Fy (W) dnr F et jg sinha F, (A) dr = 0,} (129)
4 0

where the upper signs apply when ¢ = 0 and the lower signs when ¢ = =.
- To determine which are maxima and which are minima, we refer to (97), which, since
0p/ds = 0 at such points, reads

Pp ., 1 op_12up
Lapolme

It vs obvious that at a maximum of p, B is negative (i.e., the tooth approaches the socket as
the result of the displacement), and that at a mintmum of p, B is positive (i.e., the tooth
recedes from the socket).*

Let us now consider the applied force-system which produces the plane displacement
u, U, wg. By symmetry, it can be reduced to forces X, Y acting at the apex O along

~ * It is easily seen from (59) that this method of distinguishing between maxima and minima is valid
also in the general case, where the root is not necessarily of revolution nor the membrane of uniform
thickness.

VOL. COXXXI.—A, 3 Q
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468 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

the axes of z and y respectively, together with a couple N whose axis is the axis of 2.
We assume that the part of the tooth which is not covered with membrane is subjected
to the uniform atmospheric pressure P, and we do not count the resultant of this pressure
as part of the applied force-system. '

The conditions of statical equilibrium of the tooth give the equations

x= [~ rﬂ"(p—-P)Rél%dc ds,

e=0J¢$=0 d
. oc=1 d=2m ) dx . :
Y‘“‘"Lo.t:o (p — P) R cos ¢ 2L do d, S8

N=~j"=’ [¢=2"(p—13)Rcos ¢<x§-f+3‘%§>dcd¢. )

e=0Jé6=0

Inserting the value of p from (128), we obtain the following result :—

TueorEM XIX.—In the case of a tooth of revolution, with & membrane of uniform
thickness h, the following equations connect the applied force-system and the displacement
of the tooth, when this displacement is a plane displacement :

!
X = 6rpuh3 [ R? do,
0

l
Yz—njoglefdc, ... (32)

- ' dx dR
N—=—n joglR <x% +R%) ds, |

where g, vnvolves the components v and wj of the displacement of the tooth, bevng given by
(125) and (116).

It may be remarked that if 273 is brought under the sign of integration in the first of
these equations, they are valid for the more general case in which % is not a constant,
but is a function of o only; for this more general case, g, has not been evaluated
explicitly ; it is to be determined from the differential equation (104), with the boundary
conditions (108). '

§ 14. The conical model.

" Let us now consider a model tooth whose root is a right circular cone. This is the
simplest and most convenient geometrical figure which we can choose to represent the
average shape of the root of the upper central tooth. The approximation is not too
bad, although in reality the cross-section of the root deviates from the circular shape
in the direction of the triangular. For simplicity, we shall confine ourselves to the
case of a membrane of uniform thickness 4, although in the human tooth the membrane
varies considerably in thickness, being thickest at the margin and the apex, and thinnest
about half way between. We shall confine our attention to the plane displacement
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J. L. SYNGE ON THE TIGHTNESS OF THE TEETH. 469

discussed in § 18, which is the type of displacement caused by the application to the
tooth of a single force whose line of action intersects the axis of the conical root.

Fia. 11.

We shall choose axes as in § 13, the origin being at the apex of the root and the axis
of z being the axis of symmetry. The axis of 2z will be perpendicular to the plane of the
displacement. We shall adopt the following notation, the numerical values being those
which we shall employ in making numerical calculations for the upper central tooth

(¢f. §1):

Length of root = ¢ = 0-49 in, _ I
Radius of cross-section of root at margin of membrane (supposed circular)
= ¢ = 0-127 in.*
Semi-angle of root = a = tan™? (¢'/a) = 14° 35’ # (133)

Distance of biting edge from apex = p = 0-88 in.
Area of cross-section of root at margin of membrane = A = nc? =
0-051 sq. in. J

We shall first develop the relations (132) between the applied force-system and the
components of the displacement of the tooth.
From the geometrical shape of the root we have

R =ztana, c = (0 — z)seca, ' 1 A
- ' ) - ... (134
(= j Rt do = cosec a log (a/x), 2= ae““““‘.j (134)

0

From the first of (132) the axial component of force is given in terms of the awxial translation
by

X=32%rpuah3secatanda. . . . . . . . . .. (135)
By (116) we have :
F, (€) = — 12pa? h® sin « tan o (ve™*""* 4 gy sec? « e~%%"9), | . (186)
and therefore by (125)
2 k‘3 . —2¢sina __ e—g o e—SQsina . 6—-5
g, = 12p0 sin « tan « <fvm + 0wz sec? a m) (137.)

* This value is half the arithmetic mean of the diameters given in § 1.

3 Q2
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Hence by (132) we have

tans o 1 L1 '
Y =12 Ap—3 o8 « - <L’U T 1 2 ¢ e \l
T T o sma \* 1+2smm—|—5amasec 1T 3sma,

(138)
tan® « 1 1
N = 12rpqh-» 520 o ol < 1 : -—————>
e S ema \P T Fasma T 00esseC e e )

=1

Hence we may state the result :

TrHeOREM XX.—FKquations (135) and (138) express the applied force-system in terms
of the plane displacement of the conical model.  The displacement is therefore given in
terms of the force-system by
__ 2 cos o cot? «

3ruat

t

~ Bk? cot? (1 + 2sin )
V=
‘ 3rnpa®

[56Y sec o (1 + 2 sin«) — 6N cos « (1 + 3 sina)], L (139)

__ Bh® cos® « cot?® « (1 4 3 sin «)

Wg=
8 2rpual

[4aY sec a (1 + 2 sin «)
— BN cos « (1 + 3 sina)],

in which h s the uniform thickness of the membrane, . is its rigidity, o is the length of the
root, and o s the semi-angle of the root. A

Since the displacement of the tooth is two-dimensional, it is equivalent to a rotation
about an axis perpendicular to the plane of the displacement. We shall call the point
where the axis of rotation cuts the diametral plane of the displacement, the centre of
rotation ; its co-ordinates are

r=—v0; , y=uloy , 2=0 . .. . . .. . (140)
Let us suppose that the tooth is subjected to a single force Y, whose line of action inter-
sects the axis of symmetry at the point (p, 0, 0). We have then N = ¢ Y, and the position
of the centre of rotation is given by '
14 2sina 6(p/a)cos?a (I 4 3sina) — 5 (1 4 2sin«)
1+ 3sina 5(p/a)cos?a(l 4 3sina) — 4 (1 -+ 2sina)’
y = fa 1 1 X
Y71+ 8sine 5(p/a)cos?a (1 + 3sina) —4 (1 + 2sina) Y

Just as with the wedge-shaped model, for a given conical tooth the value of
z depends only on the distance from the apex to the point where the line of action of
the applied force cuts the axis of the root, whereas the value of ¥ depends, not only on
this- distance, but also on the inclination of the applied force to the axis of the root.

Let us now insert the numerical values for the upper central tooth ; we find that
the centre of rotation of the conical model of the wpper central tooth, under the action
of a force applied at the biting edge, is situated at the point whose co-ordinates are

©=0-72a=0-35in., y=10-17a(X/Y)=0-0085 (X/Y)in. . . (142)

= 3a sec?u
(141)
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This result differs quite considerably from the corresponding result for the wedge-
shaped model (¢f. (89)). We see that for the conical model the value of z corresponds
to a distance from the apex slightly less than three-quarters of the length of the root.
As with the wedge-shaped model, the distance of the centre of rotation from the
axis of the root is small, unless the applied force is nearly axial; this is shown in the
following table :—

Conical MopeL oF THE UPPER CENTRAL TooTH.

Inclination to axis of root of Distance of centre of rotation
force applied at biting edge from axis of root = y.
= tan—! (Y, X).
0° )
1° 0:99¢ = 0-49 in.
2° 0:50¢ = 0-24 in.
10° 0-098¢ = 0-048 in.
20° 0:048¢ = 0-023 in.
30° ' 0:030¢ = 0-015 in.
45° 0:017¢ = 0-008 in.
90° 0

Summing up, we may state the following result :—

TurorEM XXI.—For the conical model of the upper central tooth with o membrane of
uniform thickness, the application of a force at the biting edge makes the tooth turn about an
awis which passes close to the awis of the root, unless the force is nearly axial ; the common
perpendicular to the axis of the root and axis of rotation meets the former at a distance
Sfrom the apex slightly less than three-quarters of the length of the root.

Let us now consider the distribution of pressure in the membrane. This is given by
(128), in which

’”Rdc=%secoctanoc(a2—-x2), B ¢ )

v 0

and g, is given by (137) ; hence we may state the result :

TurorEM XXIL—The pressure in the membrane of the conical model (the membrane
being of uniform thickness h) is given in terms of the displacement of the tooth by the
Sformula

p — P = — 3uuh~?sec a tan a (¢* — a?)

+ 12pa2h ™8 sin « tan « cos ¢ [l__.__?.)______ {(?)2 - (ff\)cosec “} v

1 —4sin?a |\a a

st ([T (0 }] (144)

1—9sin?a \g G
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472 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.

It is convenient to regard this excess over atmospheric pressure as due to (i) the axial
displacement « ; (ii) the transverse displacement v, w,, or, equivalently, to (i) the axial
load X ; (ii) the transverse load Y, N. Thus we may state the result :

TreorEM XXIII.—In the case of the conical model with a membrane of uniform thick-

ness, the excess of the pressure in the membrane over atmospheric pressure, due to the axial
load X, s, by (139),

-~ 2X/ 2
P—-P=——Q1——§—2>, R 1)

where A s the area of the cross-section of the root at the margin of the membrane, and o s
the length of the root ; the excess of pressure, due to the transverse load Y, N, is

104 2 (i@ [m\ee . N .
p—P— anﬁcow[l_mm{@ -—(95) }{5Y(1—|—2smoc)——6500s2oc(1+331noc)}

_ L—__%S_i?l; {(g\f—_ <§>cosec “} {4Y (142 Sinoc)——5§_cosza (1-+3sin “)}jl'
(146)

The excess of pressure due to thetotal load s found by adding the right-hand sides of (145)
and (146).

We note the following facts :

TaeorEM XXIV.—Under a purely axal load X, the pressure wn the membrane increases
or decreases steadily from P — 2X/A at the apex to P at the margin, according as X s
positive or negative.  The critical axial load (which reduces the pressure at the apex to
zero) is a pulling force '

X = {AP. e e e e (147
For the conical model of the wpper central tooth, this gives
X =0-381bs, . . . . . . ... ...(1474)

when the atmospheric pressure is 15 1bs. per sq. in.*

The above force, when applied as an axial pressure, raises the pressure at the apex
to two atmospheres.

The following results are immediate consequences of (146) :—

TueorREM XXV.—The pressure tn the section of the membrane by the diametral plane
perpendicular to the plane of the displacement vs unaffected by the transverse force-system ;
1t vs giwen by (145).

TarorREM XXVI.—Under a purely transverse load, the pressure at the apex s equal
to atmospheric pressure.t

Let us now consider in more detail the distribution of pressure due to the transverse
load, as given by (146). Let us insert numerical values for the upper central tooth,

* Tt is interesting to compare the above values with the corresponding values for the case of the wedge-
shaped model, given in (93) and (934). .

1 It is easily seen, by reference to (128) and (132), that this result is true, not only for the conical model,
but also for the general case of a surface of revolution.
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and assume that the load consists of a single force Y, applied at the biting edge in a
direction perpendicular to the axis of the root ; we are therefore to put

N=pY =1-80aY.

The data (133) give
cosec o« = cosec 14° 35" = 3-97.

Hence we may state the result :

TuroreEM XXVIL.—The distribution of pressure in the membrane (of uniform thickness)
of the conical model of the wpper central tooth, under the application of a transverse force
Y 1bs. at the biting edge, s given in lbs. per sq. vn. by the formula

p =P — 3350Y cos ¢ (z/a)? [(x/a)"*" — 1-627 (x/a) 4 0-627]. . . (148)

The pressure 1s equal to atmospheric pressure, not only at the apex and at the margin of
the membrane, but also on an intermediate circular section, gien by

2=0640=0-31in. . . . .. .... (149)

Let us now consider the critical transverse load Y applied at the biting edge, ¢.e.,
that load which reduces the pressure to zero at some point of the membrane.
The maximum and minimum values of p, for a given load Y, occur at the points

given by

¢ =0orm,

..... (150)
(/@) [3-97 (x/a)""" — 4-88 (z/a) + 1-254] = 0.

Leaving out of consideration the apex # = 0, at which we know that p is equal to the
atmospheric pressure P, we find that the zeros of the remaining [ ], which is nearly

quadratic, are
x=0-87a = 0-43 in., £=0-37a =0-18in. . . . . . (151)

Hence the four points of stationary pressure are as follows, with the corresponding
pressures in lbs. per sq. in., Y being measured in lbs. :—

M, ..$¢=0 2=0-87a, p=P-79Y,

M, .. ¢=0, z = 0-370, p =P —176Y,

M, ..¢=m, z = 0-37a, p =P 4 76Y,

M, ... 4 =m, x = 0-87a, p =P —"79Y.
Let us (without loss of generality) assume Y to be positive. The highest pressure
occurs at M, and the lowest at M,. We may state the following result :—

TaroreEM XX VIIL.—When the conical model of the wpper central tooth, with & membrane
of uniform thickness, 1s subjected to a positive transverse force Y at the biting edge, the
points of mazimum and minimum pressure are the points My, My, My, My, shown in
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Fig. 12, and described above.  The greatest and least pressures occur at M, and M,
respectwvely.  The critical transverse load is

Y=P/9lbs, . .. ... ...... (152)

when P s expressed wn lbs. per sq. in. ; under this load, the pressures are as follows :—-

at My, p=2P; at M,, p=0-04P;
e (153)
at M, p =1-96P; at M, p=0.
When P = 15 lbs. per sq. in., the critical transverse load is
Y =0-191bs. =300z . . . . .. . ... (1524)

M,

Centﬁs of

totation

H,
Fig. 12.

Fig. 13 shows the distribution of pressure along the generators ¢ =0 and ¢ ==,
when the tooth is subjected to the critical transverse load ; the values of p/P are given
by (148), on putting Y = P/79, and substituting the appropriate values for ¢. The
distribution of pressure may be compared with that shown in fig. 9 for the case of the
wedge-shaped model.
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J. L. SYNGE ON THE TIGHTNESS OF THE TEETH. 475

Fig. 14 shows the lines of constant pressure (or, more precisely, their projections on
the plane of the displacement) when the tooth is subjected to the critical transverse
load, in the sense indicated by the arrow marked Y on the right-hand side. The curves
are plotted from the formula (148).

¢-=o

Fic. 14.

Let us return to equations (139), which connect the displacement of the conical model
with the forces applied toit. We have, in (133), given numerical values for the constants
a and «, and an average value for 4 may be taken to be (see Introduction)—

h=0:009510.; . . . ... ... ... (154)

but before the equations can be applied to find the numerical value of the displacement
corresponding to an assigned load, we must know the numerical value of the rigidity p
of the membrane. For this no figures appear to be available, but it is interesting to
see what displacements correspond to the critical axial and transverse loads if we
assume that the rigidity of the membrane is the same as that of rubber, viz. :—

w =16 X 10" dynes per sq. cm. = 230 lbs. per sq. in. . . . . (155)

Before inserting this value (which is, of course, purely tentative), let us note that by
(139) the axial displacement « is given in terms of the axial load X by the equation

3
u =K, T .. . . (158)
where K, is a constant without dimensions,
' 3
K, — 2¢0sacote _ 4y00 S s

3
VOL. OCXXXI.—A. 3R
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476 J. L. SYNGE ON THE TIGHTNESS OF THE TEETH.
and that the transverse displacement v of the apex and the rotation w4 for a transverse
load Y at the biting edge (so that N = oY) are given by

3
V= K2 %3
where K, and K, are constants without dimensions,

2
3r

[5seca (I 4 2sina) — 6 (p/a) cos o (1l 4 3sina)]
— — 480, (159)
K, = — 5 cos? « cot® « (1 4 3 Sm“)H sec o (1 4 2 sin )

2
— 5 (p/a) cos o (1 + 3 sina)]= 670 ; (160)

the transverse displacement of the biting edge is

8—v+pw3—KYk .......... (161)
pna

where
K4 K.g + P/a K3 S 730 ......... (]62)

Let us now insert for # and u the numerical values (154), (155), and for @ the numerical
value given in (133). If in (156) we make X equal to the critical axial load of 0-38 Ibs.,
we find that the axial displacement of the conical model of the upper central tooth under
the influence of the critical axial load of 0-38 lbs. is 2-8 X 1077 un., if the membrane has
the same rigidity as rubber. The axial displacement is proportional to the axial load ;
it would require (on the above assumptions) an axial load of over 1,300 lbs. to give the
tooth an axial displacement of one thousandth of an inch, if the membrane were able
to stand the stress, which, of course, it would not be able to do. It appears therefore
that our theory explains very successfully the tightness of the teeth with respect to
axial loading. It is difficult to see how an elastic cord theory could give an adequate
explanation.

Let us now insert in (161) numerical values, giving to Y the value of the critical
transverse load, namely, 0-19 lbs. We find that the transverse displacement of the
biting edge of the conical model of the upper central tooth, under the influence of the critical
tramsverse load of 0-19 lbs. applied at the biting edge, is 8-9 X 1076 in., tf the membrane
has the rigidity of rubber. 1t would require a transverse load of about 21 Ibs. to produce
a transverse displacement of one thousandth of an inch. Here again we see that the
tightness of the tooth is well explained.

It may well be that the rigidity of the membrane is considerably less than that of
rubber. Its value might be determined experimentally by measuring the displacement
of the edge of the tooth corresponding to a measured transverse load, and using the
formula (161), the constant K, having perhaps a somewhat different numerical value for
the tooth employed in the experiment.
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The explanation of the loosening of a tooth is to be found in one or both of two
phenomena. The first is an increase in the thickness of the membrane % (to the cube
of which the displacement is proportional), and the second is a decrease in the rigidity
© (to which the displacement is reciprocally proportional). The latter will undoubtedly
occur when the fibre-bundles break down, and are replaced by loose connective tissue,
observed microscopically in the membranes of functionless teeth. The limiting case of
this process of breaking down might be regarded as that in which the membrane ceases
to act as an elastic solid, and becomes viscous liquid ; a sustained load on the tooth
will then cause the membrane to flow like a liquid, and the tooth will be brought into
contact with the bone.

[Added in proof, February 10, 1933.—Since this paper was written, I have investi-
gated the case of a tooth having a general conical root, not of revolution, and, in
particular, the case where the section of the root is an equilateral triangle : these
results are appearing in the ¢ Philosophical Magazine.’]
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